17.11.2019
PL EN
11.09.2015 aktualizacja 11.09.2015

Terminator jak żywy? Trwają prace nad programowalną materią

Fot. Fotolia Fot. Fotolia

T1000, czarny charakter z filmu "Terminator 2", potrafił płynnie zmieniać kształt i właściwości materiału, z którego był zbudowany. Do takich rozwiązań droga jest jeszcze długa, ale prace nad programowalną materią już trwają - mówi naukowiec Jakub Lengiewicz.

Na razie naukowcy nie liczą specjalnie na to, że uda im się przygotować materiał tak mocny i tak błyskawicznie zmieniający kształt, jak ten znany z filmu o elektronicznym mordercy. "Wstępne prace pokazują, że taka dynamika ruchu, siła i rekonfigurowalność będą raczej trudne do realizacji" - przyznaje w rozmowie z PAP dr Jakub Lengiewicz z Instytutu Podstawowych Problemów Techniki PAN w Warszawie, który kieruje projektem badawczym dotyczącym programowalnej materii. Dodaje jednak, że być może w ciągu kilkunastu-kilkudziesięciu lat uda się wypracować technologię, dzięki której powstaną materiały mogące na życzenie użytkownika w znacznym stopniu zmieniać kształt, kolor i inne swoje właściwości.

SIĘGAĆ TAM, GDZIE NIKT NIE SIĘGA I TWORZYĆ RUCHOME RZEŹBY

Naukowcy nie mają zamiaru tworzyć technologii do tak mrocznego użytku, jak w filmach o Terminatorze. "Według mnie, programowalna materia będzie miała dwa główne kierunki zastosowań: po pierwsze, mogłaby służyć podczas misji prowadzonych w nieprzewidywalnych warunkach lub do trudno dostępnych miejsc, a po drugie, można by było jej używać do odzwierciedlania wirtualnych obiektów w świecie rzeczywistym" - wymienia badacz.

Podaje przykład misji kosmicznych, w których wyniesienie na orbitę każdego dodatkowego grama sprzętu związane jest z dużymi kosztami. Dzięki programowalnej materii, można by ograniczyć ilość transportowanego materiału i tworzyć na miejscu takie narzędzia, jakie byłyby w danym momencie potrzebne. Zmiennokształtność mogłaby być też pomocna w misjach ratunkowych np. w gruzowiskach programowalna materia docierałaby do poszkodowanych, informowałaby ratowników o ich położeniu, dostarczała wodę czy jedzenie, a nawet umacniała miejsce wokół uwięzionych osób. Programowalna materia mogłaby też służyć w medycynie - mikromoduły wstrzykiwane byłyby pacjentowi do krwi, w organizmie łączyłyby się w konkretnym miejscu w narzędzie, rozwiązywałyby problem (np. usuwały zakrzep), po czym rozłączałyby się i byłyby usuwane z organizmu.

Drugi rodzaj zastosowań szczególnie oczekiwany byłby w przemyśle rozrywkowym. Programowalna materia umożliwiłaby rzeczywistą trójwymiarową wizualizację (np. rozmówcy po drugiej stronie łącza internetowego), aktor mógłby "wyjść" do widza z ekranu, a każdy wielbiciel sztuki mógłby mieć w domu rzeźbę, o jakiej by tylko zamarzył. Nawet ruchomą.

DUMANIE NAD MODUŁAMI

"Aby takie rozwiązania stały się dostępne, trzeba opracować maleńkie moduły, które miałyby możliwość fizycznego łączenia się ze sobą, zmiany położenia względem siebie, komunikowania się ze sobą i przetwarzania informacji" - wyjaśnia naukowiec z IPPT PAN. Gdyby takie moduły były kuleczkami wielkości ziarenek piasku, to połączone w jeden obiekt wyglądałyby dla człowieka jak ciągły, stabilny materiał.

Badacz wyjaśnia, że na razie prace nad programowalną materią nie wyszły jeszcze na świecie poza fazę badań podstawowych. "Jeśli chodzi o działające moduły, to na razie są one duże - to kostki o średnicy kilku - kilkunastu cm. Powstały już wprawdzie prototypy o średnicy milimetra, ale to dopiero wstępne rozwiązania. A w dodatku liczba wspólnie działających modułów jest zwykle ograniczona do kilkudziesięciu" – przyznaje dr Lengiewicz.

Zaznacza, że wyzwań, jakie stoją przed badaczami w zakresie materii programowalnej, jest bardzo wiele. To m.in. problemy z miniaturyzacją, z zasilaniem modułów, z systemem komunikacji między nimi i synchronizacją ich pracy. Z kolei problemem, z którym mierzy się w swoich badaniach dr Lengiewicz, jest to, by moduły łączyły się ze sobą silnymi wiązaniami w taki sposób, by mogły tworzyć stabilne struktury, zdolne zmieniać kształt i wykonywać pracę mechaniczną.

ZNALEŹĆ PUNKT ZACZEPIENIA

"W większych robotach, o modułach rzędu kilku - kilkunastu cm, stosuje się złącza mechaniczne, zaczepy czy mechanizmy dokujące. Dzięki nim moduły sczepiają się ze sobą. W skali makroskopowej spisuje się to nieźle. Ale jeśli myślimy o miniaturyzacji, to budowanie takich maleńkich, sprawnych zaczepów jest właściwie niemożliwe. Stąd pomysł, by we wnętrzu modułów znajdowały się programowalne elektrody lub elektromagnesy, dzięki którym moduły mogłyby się przyciągać, odpychać albo przetaczać po sobie" - opowiada. Przyznaje jednak, że i to rozwiązanie nie jest idealne. "Siły takie mogłyby być zbyt słabe, by moduły utrzymywały się razem nawet tylko pod własnym ciężarem. Duże układy osypywałyby się więc jak babka z piasku" - wyjaśnia Lengiewicz.

MECHANICZNE MIĘŚNIE

"W naszym projekcie mamy dodatkowy pomysł: tworzymy specyficzne mikrostruktury siłownikowe, które swoją budową i sposobem pracy przypominają komórki mięśni ludzkich" - opowiada Lengiewicz. Wyjaśnia, że rozwiązanie, nad którym pracuje jego zespół, zakłada wprowadzenie między modułami dodatkowego połączenia - połączenia silnego. Ten rodzaj połączenia można by w praktyce realizować na różne sposoby, np. wykorzystując przemiany fazowe (odwracalny proces spawania) czy też polimeryzację. Za sprawą takich działań moduły mogłyby tworzyć sztywną strukturę wynoszoną i poruszaną potem przez inne, aktywne moduły. "Dzięki wzajemnemu odpychaniu się sztywno połączonych struktur przy udziale modułów aktywnych, moglibyśmy uzyskać efekt siłownika" - uważa dr Lengiewicz i stwierdza: "To rozwiązanie umożliwi wykonywanie skalowalnej pracy. Jeśli więc obiekt będzie np. 10 razy większy, to będzie też 10 razy silniejszy. Będzie nie tylko wytrzymały, ale i będzie działał w dowolnej skali."

"Skupiamy się na projektowaniu układów, na symulowaniu ich właściwości i na algorytmach, które pozwalać będą na budowę takiego siłownika z chaotycznie ułożonych modułów struktury" - dodaje rozmówca PAP.

"Badań nad aspektem, którym się zajmujemy, brakowało na razie na świecie. Bez przezwyciężenia problemu braku skalowalności układów wielomodułowych, badania kręciłyby się w kółko i technologia nie mogłaby pójść do przodu" - wyjaśnia naukowiec.

Realizacja projektu, prowadzonego w ramach grantu z programu SONATA Narodowego Centrum Nauki, potrwa do 2017 r.

PAP - Nauka w Polsce, Ludwika Tomala

lt/ agt/

Copyright © Fundacja PAP 2019