Strona główna Aktualności
Technologie

Pionierski laser polimerowy opracowany przez Polaków

20.09.2016 Technologie

Wymuszony efekt Ramana. Źródło: Pracownia Fizykochemii Materiałów i Nanotechnologii, Wydział Chemii, UAM w Poznaniu

Polimer – w tym przypadku tworzywo sztuczne - pobudzony prądem elektrycznym może świecić jak laser! Naukowcy z Poznania jako pierwsi na świecie pokazali, że takie urządzenie da się zbudować. To otwiera drogę do laserów tańszych i łatwiejszych w produkcji.

Naukowcy z całego świata od dawna rywalizowali, kto pierwszy skonstruuje polimerowy laser zasilany bezpośrednio prądem elektrycznym. Nie za bardzo wiedziano, jak sprawić, żeby sztuczne tworzywo pod wpływem prądu elektrycznego zaczęło emitować uporządkowaną laserową wiązkę światła. Ten nie lada wyczyn udał się jednak zespołowi prof. Jerzego Langera z Wydziału Chemii UAM.

 

Lasery wykonywane z polimerów będą tańsze i łatwiejsze w produkcji niż tradycyjne lasery. Polimery bowiem można szybko i stosunkowo łatwo otrzymywać oraz przetwarzać, i nie są do tego potrzebne technologie stosowane przy wytwarzaniu i obróbce tradycyjnych półprzewodników, często z użyciem unikatowych materiałów.

 

A JEDNAK ŚWIECI!

 

"Na prace nad naszym polimerowym laserem nie dostaliśmy grantu z instytucji finansujących badania. Recenzenci określali projekt jako interesujący i o przełomowym znaczeniu, lecz niemożliwy do zrealizowania" - przyznaje w rozmowie z PAP prof. Langer. Na szczęście naukowcy nie poddali się i laser udało się im zbudować. Można sprawić, by emitował światło niebieskie, fioletowe albo czerwone. Można też dzięki niemu uzyskać światło białe, generowane poprzez tzw. wymuszony efekt Ramana. Efektem jest białe światło otoczone kolorowymi promieniami w formie stożków, które na ekranie tworzą barwne krążki.

 

Dotąd znane już były polimery, które emitowały wiązkę światła laserowego, jednak akcja laserowa musiała być w nich wzbudzana intensywnym światłem z innego źródła, często lasera. Badacze z UAM natomiast jako pierwsi na świecie pokazali, że polimer można zmusić do emisji wiązki laserowej bezpośrednio za pomocą prądu elektrycznego.

 

POLSKA POLIANILINA

 

Polimerem, który udało się zmusić do emitowania wiązki laserowej, jest polianilina. "To pierwszy polski polimer przewodzący. Zaprojektowałem go - jako materiał o oczekiwanym wysokim przewodnictwie elektrycznym - na podstawie analizy dostępnych informacji o strukturze i otrzymałem już na przełomie 1974/1975" - opowiada w rozmowie z PAP prof. Jerzy Langer. Badacz wyjaśnia, że przepis na polimer opracował, badając czerń anilinową - popularny barwnik, stosowany np. do zabezpieczania powierzchni stołów laboratoryjnych. Polianilina ma postać czarnego proszku, a w laserze używana jest w formie tabletki.

 

Naukowiec opowiada, że podczas badań nad polianiliną zaobserwowano świecenie tabletki. Ona nie świeciła jednak tak, jak zwykła żarówka - dookoła, tylko pojawiało się w niej świecenie kierunkowe. "Zainteresowaliśmy się tym zjawiskiem. Po szczegółowych badaniach okazało się, że jest to efekt laserowania" - powiedział naukowiec.

 

Upraszczając, badacz porównuje fotony tworzące wiązkę zwykłego światła, np. żarówki, do zachowania uczestników procesji - każdy foton jest inny, „idzie” swoim tempem i w nieco różne strony. A światło lasera przypomina marsz kolumny wojska - fotony są do siebie bardzo podobne i "idą" równym krokiem, dokładnie w tym samym kierunku. Światło lasera jest bardziej spójne i kierunkowe, a jego wiązka jest mało rozbieżna. Problemem było sprawienie, by polimer wymuszał na fotonach taki "żołnierski marsz".

 

LASER? CZARNO TO WIDZĘ

 

Trzeba przyznać, że pomysł, aby wykorzystać polianilinę w pracach nad laserem, był dość szalony. W końcu materiał jest całkiem czarny. A czarne materiały mają to do siebie, że w normalnych warunkach raczej pochłaniają światło, zamiast je przepuszczać. "Okazało się jednak, że można sprawić, iż polianilina staje się przezroczysta dla światła i daje efekt laserowania" - powiedział Langer.

 

Otóż, są materiały, które pod działaniem silnej wiązki światła stają się przezroczyste. Materiał intensywnie pobudzany światłem osiąga stan nasycenia i nie może już go więcej pochłaniać. To efekt znany jako „nasycalna absorpcja”. We wnętrzu tabletki uformowanej z polianiliny, pod wpływem prądu elektrycznego powstaje lokalnie silne światło, które jest absorbowane. Wkrótce jednak, absorbujący polimer światłem tym się nasyca i nie może go dalej pochłaniać. Staje się więc w tym obszarze przezroczysty. „Takie zjawisko jest stymulowane w polianilinie silnym prądem. My postanowiliśmy je wykorzystać w naszym urządzeniu. To klucz do sukcesu" - wyjaśnia prof. Langer.

 

PRACA DO WYKONANIA

 

Na razie Polacy jako pierwsi na świecie pokazali, że laser polimerowy stymulowany prądem elektrycznym da się zbudować.  Aby można to było wykorzystać, potrzebne są dalsze badania. "Przed nami opracowanie technologii wytwarzania takich laserów, żeby były one stabilne i wygodne w użyciu " - mówi naukowiec.

 

"Polianilina w formie nanostruktur była stosowana w naszym laboratorium jako podłoże do hodowli komórek i tkanek, w szybkich nanodetektorach bakterii oraz niebezpiecznych związków chemicznych. Teraz pokazujemy, że może ona znaleźć zastosowanie w laserach. Przed nami program rozszerzenia badań na podstawie wniosków z wcześniejszych eksperymentów, sugerujących, że materiał ten może być nadprzewodzący" - zdradza rozmówca PAP.

 

PAP - Nauka w Polsce, Ludwika Tomala

 

lt/ agt/ mrt/

Nanostrukturalna polianilina – zastosowany materiał aktywny. Źródło: Pracownia Fizykochemii Materiałów i Nanotechnologii, Wydział Chemii, UAM w Poznaniu

Laserowanie. Źródło: Pracownia Fizykochemii Materiałów i Nanotechnologii, Wydział Chemii, UAM w Poznaniu

Podziel się
Ocena: 0 głosów

Logowanie



Nie pamiętam hasła

Rejestracja

Komentarze: 1
Skomentuj Zobacz wszystkie   Dyskutuj na forum

Uwaga Redakcje!

Wszelkie materiały PAP (w szczególności depesze, zdjęcia, grafiki, pliki video) zamieszczone w serwisie "Nauka w Polsce" chronione są przepisami ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych oraz ustawy z dnia 27 lipca 2001 r. o ochronie baz danych.

 

PAP S.A. zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: www.naukawpolsce.pap.pl a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - www.naukawpolsce.pap.pl. W przypadku portali społecznościowych prosimy o umieszczenie jedynie tytułu i leadu naszej depeszy z linkiem prowadzącym do treści artykułu na naszej stronie, podobnie jak to jest na naszym profilu facebookowym. 

 

Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów video.

 

Informacje tekstowe z kategorii "Świat" można pozyskać odpłatnie abonując Serwis Nauka i Zdrowie PAP. Serwis ten zawiera ponadto wiele innych najnowszych doniesień naukowych z zagranicy oraz materiałów dotyczących szeroko rozumianej problematyki zdrowotnej. 

 

Informacje na temat warunków umowy można uzyskać w Dziale Sprzedaży i Obsługi Klienta PAP, tel.: (+48 22) 509 22 25, e-mail:  pap@pap.pl

 

Informacje o przedruku artykułów z Serwisu Nauka w Polsce, prośby o patronaty medialne, informacje o prowadzonych badaniach, organizowanych konferencjach itd., prosimy przesyłać na adres: naukawpolsce@pap.pl

 

 

Najpopularniejsze materiały

więcej

Książka

Czy Ziemia to komputer? „Głęboka myśl” ponownie w księgarniach Czy Ziemia to komputer? „Głęboka myśl” ponownie w księgarniach

Wznowienia doczekały się kultowe książki Douglasa Adamsa, w których opisuje on m.in. „Głęboką myśl” - maszynę, której nazwę koncern IBM nadał swemu komputerowi szachowemu - Deep Thought.

Więcej

Myśl na dziś

Wiedzę możemy zdobywać od innych, ale mądrości musimy nauczyć się sami.
Adam Mickiewicz

Nasz blog

Planetarne zoo Planetarne zoo

Ciemne jak smoła, lekkie jak styropian czy pokryte szafirowymi chmurami – takie bywają badane w ostatnim czasie pozasłoneczne planety. Niektóre z nich mogą się okazać bardzo przydatne dla nauki.

Więcej

Tagi