Strona główna Aktualności
Kosmos

Nobel z fizyki za fale, które wstrząsnęły Wszechświatem

03.10.2017 Astronomia, Kosmos, Nagrody i wyróżnienia, Nagrody, Nagrody Nobla 2017
epa06241396 The 2017 Nobel Prize winners in Physics Rainer Weiss, Barry C. Barrish and Kip S. Thorne (on screen L-R) are presented on a screen while being announced the Nobel Prize laureates by the Secretary General of the Royal Swedish Academy of Sciences, in Stockholm, Sweden 03 October 2017. The three US scientists were awarded 'for decisive contributions to the LIGO detector and the observation of gravitational waves'.  EPA/JESSICA GOW SWEDEN OUT Dostawca: PAP/EPA.

Fot. PAP/EPA/ JESSICA GOW 03.10.2017

Tegoroczną Nagrodę Nobla przyznano Rainerowi Weissowi, Barry C. Barishowi i Kipowi S. Thorne, dzięki którym powstał detektor LIGO i po raz pierwszy zaobserwowano fale grawitacyjne – echo zderzenia odległych czarnych dziur.

Połowę nagrody pieniężnej (9 milionów koron szwedzkich, czyli 4 miliony złotych) otrzyma Rainer Weiss, drugą połową podzielą się Barry C. Barish i Kip S. Thorne.

 

Istnienie fal grawitacyjnych przewidział już Albert Einstein w ogólnej teorii względności opublikowanej 20 marca 1916 roku. Jednak po raz pierwszy udało się je zaobserwować dopiero 14 września 2015. Wówczas dotarły do Ziemi fale grawitacyjne wywołane przez zderzenie dwóch czarnych dziur (jedna o masie 29, a druga 36 mas Słońca), oddalonych od nas o 1,3 miliarda lat świetlnych. Tuż przed zderzeniem zbliżały się one do siebie z prędkością równą połowie prędkości światłą (150 000 kilometrów na sekundę). Powstała czarna dziura 62 razy cięższa niż Słońce - brakujące 3 masy Słońca to energia wypromieniowanych fal grawitacyjnych. Jako że fale grawitacyjne rozchodzą się z prędkością światła, to kiedy zdarzył się ten kosmiczny kataklizm, na naszej planecie żyły tylko prymitywne organizmy jednokomórkowe.

 

Choć fale grawitacyjne odebrane z tak wielkiej odległości są bardzo słabe, potwierdzenie ich istnienia może oznaczać przewrót w astrofizyce. Pozwalają bowiem w zupełnie nowy sposób obserwować najbardziej gwałtownie zjawiska kosmiczne i poszerzać granice naszej wiedzy. Badania nad nimi umożliwił interferometr LIGO (Laser Interferometer Gravitational Wave Observatory) – wspólny projekt 1300 badaczy z ponad 20 krajów (w tym z Polski). Idea zbudowania takiego urządzenia ma niemal 50 lat, a do jej urzeczywistnienia szczególnie przyczynili się tegoroczni laureaci. (Natomiast Weiss, w czasie wtorkowej rozmowy telefonicznej podczas uroczystości ogłoszenia nazwisk laureatów w Sztokholmie podkreślił, że nagrodę postrzega "jako uznanie dla pracy tysiąca ludzi").

 

W połowie lat 70. XX wieku Rainer Weiss przeanalizował potencjalne źródła zakłóceń, mogących zaburzać prowadzenie pomiarów fal grawitacyjnych. Zaprojektował również odpowiedni detektor – laserowy interferometr. Już wówczas Kip Thorne i Rainer Weiss byli przekonani, że fale grawitacyjne uda się wykryć.

 

Fale te powstają zawsze, gdy jakaś masa przyspiesza – zarówno w przypadku wykonującego piruet łyżwiarza, jak i pary okrążających się nawzajem czarnych dziur. Gdy taka fala przenika przez Ziemię, wszystko na niej minimalnie zmienia swoje wymiary. Jednak nawet fale wytwarzane przez czarne dziury są tak słabe, że Einstein uważał ich wykrycie za niemożliwe. W rzeczywistości okazało się to "tylko" bardzo trudne – potrzeba było pary ogromnych interferometrów laserowych, oddalonych od siebie o 3 tysiące km, aby wykryć zmianę długości interferometrów, tysiące razy mniejszą od rozmiarów jądra atomowego. Każdy z detektorów (jeden w stanie Waszyngton, drugi – w Luizjanie) ma dwa tunele w kształcie litery L. Długość takiego tunelu to 4 kilometry. W ich wnętrzu odbijają się wiązki laserowa, a odpowiednia aparatura sprawdza, czy długość jednego ramienia nie zmieniła się w stosunku do drugiego. Zwykle wyniki pomiaru są takie same – chyba, że fala grawitacyjna odkształci czasoprzestrzeń.

 

Wszystkie znane rodzaje promieniowania elektromagnetycznego i cząstek elementarnych – w tym promieniowanie kosmiczne – znalazły już zastosowanie w badaniach Wszechświata. Jednak właściwości fal grawitacyjnych pozwalają na bezpośrednią obserwację zaburzeń czasoprzestrzeni, otwierając zupełnie nowe perspektywy w astrofizyce.

 

Możemy się spodziewać wielu nowych odkryć dokonanych dzięki nieuchwytnym dotychczas falom. Pierwszym było samo odkrycie podwójnego układu czarnych dziur, których trwające 0,12 sekundy zderzenie zarejestrowano 14 września 2015. Czarne dziury nie generują światła ani fal radiowych – za to mogą wytwarzać fale grawitacyjne. Możliwe, że uda się wykrywać także zderzenia gwiazd, rotujące gwiazdy neutronowe czy wybuchy supernowych. (PAP)

 

Autor: Paweł Wernicki

Edytor: Anna Ślązak

 

Nauka w Polsce

 

pmw/zan/

 

Czytaj także:

 

Prof. Jaranowski: nobel z fizyki ma polski posmak

 

Prof. Bejger: nobliści reprezentują to, co najlepsze w astrofizyce

 

Prof. Królak: to dopiero początek badań nad falami grawitacyjnymi

 

Prof. Lewandowski: szkoda, że za fale grawitacyjne nie nagrodzono prof. Trautmana

 

Prof. Bulik o badaniach fal grawitacyjnych: to korzyści dla nauki i technologii

 

Andrzej Trautman – polski badacz fal grawitacyjnych

 

 

Nagroda Nobla z dziedziny fizyki. Źródło: Infografika PAP/ Maciej Zieliński 03.10.2017

Nobliści w dziedzinie fizyki. Źródło: Infografika PAP/ Maciej Zieliński

Podziel się
Ocena: 0 głosów

Logowanie



Nie pamiętam hasła

Rejestracja

Komentarze: 0
Skomentuj Zobacz wszystkie  

Uwaga Redakcje!

Wszelkie materiały PAP (w szczególności depesze, zdjęcia, grafiki, pliki video) zamieszczone w serwisie "Nauka w Polsce" chronione są przepisami ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych oraz ustawy z dnia 27 lipca 2001 r. o ochronie baz danych.

 

PAP S.A. zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: www.naukawpolsce.pap.pl a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - www.naukawpolsce.pap.pl. W przypadku portali społecznościowych prosimy o umieszczenie jedynie tytułu i leadu naszej depeszy z linkiem prowadzącym do treści artykułu na naszej stronie, podobnie jak to jest na naszym profilu facebookowym. 

 

Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów video.

 

Informacje tekstowe z kategorii "Świat" można pozyskać odpłatnie abonując Serwis Nauka i Zdrowie PAP. Serwis ten zawiera ponadto wiele innych najnowszych doniesień naukowych z zagranicy oraz materiałów dotyczących szeroko rozumianej problematyki zdrowotnej. 

 

Informacje na temat warunków umowy można uzyskać w Dziale Sprzedaży i Obsługi Klienta PAP, tel.: (+48 22) 509 22 25, e-mail:  pap@pap.pl

 

Informacje o przedruku artykułów z Serwisu Nauka w Polsce, prośby o patronaty medialne, informacje o prowadzonych badaniach, organizowanych konferencjach itd., prosimy przesyłać na adres: naukawpolsce@pap.pl

 

 

Najpopularniejsze materiały

więcej

Książka

Tajemnice grzybów - dla niewtajemniczonych Tajemnice grzybów - dla niewtajemniczonych

Czy wiedzieliście, że grzyby można spotkać nawet na pustyniach czy w oceanach? Albo wykorzystać jako... planistów ruchu? Każdy, kto czuje się gotów na wprowadzenie do swojego życia tych i innych ciekawostek okołogrzybowych, powinien sięgnąć po książkę "Tajemnicze życie grzybów".

Więcej

Myśl na dziś

Dobrze zrozumiana nauka chroni człowieka przed pychą, gdyż ukazuje mu jego granice.
Albert Schweitzer

Nasz blog

Reglamentowane pradzieje. O nowej syntezie najstarszych dziejów naszego kraju Reglamentowane pradzieje. O nowej syntezie najstarszych dziejów naszego kraju

Nowe kompendium wiedzy o polskich pradziejach przygotowywano przez ponad 5 lat i wydano na nie 1,4 mln zł. Mimo, że publikację wydano również w wersji elektronicznej, dostęp do niego będą mieli nieliczni. Wielka szkoda.

Więcej

Tagi