Strona główna Aktualności
Technologie

Dzięki naukowcom materia może dłużej pamiętać impuls świetlny

05.02.2015 Technologie

Fot. Fotolia

Zespół naukowców z Instytutu Fizyki PAN w Warszawie stworzył układ półprzewodnikowy, który ponad tysiąckrotnie dłużej "pamięta" impuls świetlny z nim oddziałujący oraz wszelkie informacje, które w takim impulsie mogły zostać zakodowane. Osiągnięcie to stanowi kolejny, bardzo ważny krok na drodze do skonstruowania ultraszybkich pamięci optycznych.

W dzisiejszych komputerach informacje zapisywane i przetwarzane są za pomocą impulsów elektrycznych. Nie jest to jednak najszybszy i najwydajniejszy sposób przetwarzania danych. Dla potrzeb przyszłych komputerów czy telekomunikacji fizycy pracują nad szybszymi - optycznymi - metodami obróbki informacji. Jeśli uda się kodować, zapamiętywać i odtwarzać informacje metodami optycznymi, możliwe będą dalsze kroki w miniaturyzacji urządzeń i w przyspieszeniu ich pracy. Co więcej, jest nadzieja, że wykorzystując kwantowe własności fotonów można będzie zbudować tzw. komputery kwantowe, działające według zupełnie innych zasad oraz znacznie wydajniejsze niż dzisiejsze komputery klasyczne.

 

W uproszczeniu, naukowcom zależy, aby informację zakodowaną w impulsie światła (np. polaryzację tego impulsu) można było zapamiętać i przechować przez określony czas, a następnie na żądanie odczytać. Miejscem przechowywania takich informacji jest materia, np. półprzewodnik. Niestety, światło oddziałując z półprzewodnikiem wprawdzie bardzo szybko go zmienia (wzbudza), ale zmiana ta również bardzo szybko zanika i wszelka informacja o impulsie światła jest tracona. Charakterystyczne czasy zaniku są niezwykle krótkie – rzędu pikosekund (1 pikosekunda to jedna bilionowa część sekundy, 10^-12 s).

 

Zespół naukowców z Niemiec, Rosji, i Polski opracował metodę, która pozwala znacznie wydłużyć czas przechowywania informacji o padającym impulsie światła. Wytworzone w Instytucie Fizyki PAN w Warszawie specjalne struktury półprzewodnikowe (tzw. studnie kwantowe) są w stanie zapamiętać impuls światła i informację w nim zakodowaną na czas rzędu nanosekund (10^-9 s), czyli 1000 razy dłuższy niż dotychczas. Wprawdzie czasy rzędu nanosekund są nadal niezwykle krótkie, ale po raz pierwszy czas przechowywania informacji staje się znacznie dłuższy niż czasy zapisu i odczytu. Umożliwia to zatem przeprowadzenie wielu operacji (np. operacji logicznych) na pewnych impulsach podczas przechowywania pozostałych. Ponadto, tę informację można odczytać na żądanie i wyemitować w postaci wiernej kopii impulsu oryginalnego.

 

Jak opowiadają w rozmowie z PAP polscy członkowie zespołu badawczego, profesorowie Grzegorz Karczewski i Tomasz Wojtowicz, mechanizm działania nowego typu „spintronicznej” pamięci optycznej jest następujący: pierwszy impuls światła (ten, który chcemy zapamiętać) padając na studnię kwantową zawierającą gaz dwuwymiarowych elektronów, powoduje jej optyczne wzbudzenie (kreowany jest trion T, czyli obiekt zbudowany z dwóch elektronów i dziury) i sam umiera. Drugi impuls, impuls „zapisujący”, transferuje to wzbudzenie optyczne we wzbudzenie spinów elektronowych (stąd nazwa - pamięć spintroniczna), które może przetrwać ok. 1000 razy dłużej, ze względu na słabe oddziaływanie systemu spinów z otoczeniem. Wreszcie trzeci impuls „odczytujący” transformuje z powrotem wzbudzenie spinów we wzbudzenie optyczne, które wypromieniowuje z układu impuls światła będący wierną kopią impulsu pierwszego. To ostatnie zjawisko nosi nazwę „stymulowanego echa fotonowego”. Wyniki dokumentujące to rekordowe osiągnięcie przedstawiono we wrześniu ub. roku w prestiżowym czasopiśmie "Nature Photonics".

 

Jak tłumaczą w rozmowie z PAP polscy współautorzy badań, znaczne wydłużenie czasu przechowywania informacji kodowanej optycznie to dopiero pierwszy, bardzo istotny krok do wytworzenia ultraszybkich pamięci optycznych. Prof. Karczewski i prof. Wojtowicz podkreślają również, że ta sama niemiecko-rosyjsko-polska grupa pracuje nad dalszym wydłużeniem czasu przechowywania informacji optycznej, ale już nie w dwuwymiarowych studniach kwantowych, lecz w zawierających elektrony obiektach zero-wymiarowych, w tzw. kropkach kwantowych wytwarzanych w IF PAN.

 

PAP - Nauka w Polsce, Ludwika Tomala

 

lt/ mrt/

Źródło: prof. Tomasz Wojtowicz

Podziel się
Ocena: 0 głosów

Logowanie



Nie pamiętam hasła

Rejestracja

Komentarze: 0
Skomentuj Zobacz wszystkie  

Uwaga Redakcje!

Wszelkie materiały PAP (w szczególności depesze, zdjęcia, grafiki, pliki video) zamieszczone w serwisie "Nauka w Polsce" chronione są przepisami ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych oraz ustawy z dnia 27 lipca 2001 r. o ochronie baz danych.

 

PAP S.A. zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: www.naukawpolsce.pap.pl a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - www.naukawpolsce.pap.pl. W przypadku portali społecznościowych prosimy o umieszczenie jedynie tytułu i leadu naszej depeszy z linkiem prowadzącym do treści artykułu na naszej stronie, podobnie jak to jest na naszym profilu facebookowym. 

 

Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów video.

 

Informacje tekstowe z kategorii "Świat" można pozyskać odpłatnie abonując Serwis Nauka i Zdrowie PAP. Serwis ten zawiera ponadto wiele innych najnowszych doniesień naukowych z zagranicy oraz materiałów dotyczących szeroko rozumianej problematyki zdrowotnej. 

 

Informacje na temat warunków umowy można uzyskać w Dziale Sprzedaży i Obsługi Klienta PAP, tel.: (+48 22) 509 22 25, e-mail:  pap@pap.pl

 

Informacje o przedruku artykułów z Serwisu Nauka w Polsce, prośby o patronaty medialne, informacje o prowadzonych badaniach, organizowanych konferencjach itd., prosimy przesyłać na adres: naukawpolsce@pap.pl

 

 

Najpopularniejsze materiały

więcej

Książka

Polskie tłumaczenie jednego z najważniejszych źródeł o historii Egiptu Polskie tłumaczenie jednego z najważniejszych źródeł o historii Egiptu

Do odczytania hieroglifów w 1822 r. jego zapiski stanowiły jedno z najważniejszych źródeł na temat historii faraonów Egiptu. Ukazało się pierwsze polskie tłumaczenie tekstów pozostawionych przez Manethona - kapłana egipskiego, który żył ponad 2 tys. lat temu.

Więcej

Myśl na dziś

Nauka jest kłótliwa i piękna. Jeśli chcesz mieć z nią coś do czynienia, musisz prowadzić wiecznie proces sądowy.
Isaac Newton

Nasz blog

Rektorzy, naukowcy! Doceńcie rolę popularyzacji! Rektorzy, naukowcy! Doceńcie rolę popularyzacji!

Rola komunikacji naukowej na polskich uczelniach wciąż nie jest dostatecznie doceniona. Ani przez naukowców, ani przez władze uczelni. Zdawałoby się, że prezentowanie osiągnięć naukowców to zadanie biur prasowych. Te jednak często mają ustalone zupełnie inne priorytety.

Więcej

Tagi