20.09.2020
PL EN
16.07.2020 aktualizacja 16.07.2020

Egzotyczne neutrina będzie trudno wywęszyć

Fot. Fotolia Fot. Fotolia

Międzynarodowy zespół tropiący neutrina „nowej fizyki” skonfrontował dane z eksperymentów dotyczących rejestracji neutrin. Najnowsza analiza ukazuje skalę wyzwań stojących przed poszukiwaczami prawoskrętnych neutrin, ale też niesie i iskierkę nadziei.

We wszystkich zaobserwowanych procesach z udziałem neutrin cząstki te wykazują się cechą przez fizyków nazywaną lewoskrętnością. Neutrin prawoskrętnych, będących naturalnym dopełnieniem Modelu Standardowego, nie widać nigdzie. Dlaczego? Na to pytanie pomaga odpowiedzieć najnowsza, wyjątkowo kompleksowa analiza, przeprowadzona przez międzynarodową grupę fizyków, w tym z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie. O badaniach poinformowali badacze z IFJ PAN w przesłanym PAP komunikacie.

Po raz pierwszy przy użyciu najnowocześniejszych metod statystycznych uwzględniono tu dane ze wszystkich istotnych eksperymentów pośrednio i bezpośrednio związanych z rejestrowaniem neutrin i skonfrontowano je z zakresami parametrów narzucanych przez różne rozszerzenia teoretyczne Modelu Standardowego.

Neutrina niezwykle słabo oddziałują z resztą materii. Wykazują też inne cechy o szczególnym znaczeniu dla kształtu współczesnej fizyki. Niedawno odkryto, że cząstki te oscylują, czyli nieustannie przekształcają się z jednego rodzaju w inny. Zjawisko to oznacza, że obserwowane neutrina muszą mieć pewną (choć bardzo małą) masę. Tymczasem Model Standardowy, czyli współczesne narzędzie teoretyczne ze znakomitą dokładnością opisujące cząstki subatomowe, nie pozostawia alternatyw: w jego ramach neutrina nie mogą mieć masy! Ta sprzeczność między teorią a doświadczeniem jest jedną z najsilniejszych wskazówek za istnieniem nieznanych cząstek subatomowych. Masa neutrin nie jest jednak ich jedyną zastanawiającą właściwością.

„O obecności neutrin dowiadujemy się obserwując produkty rozpadów różnych cząstek i porównując to, co zarejestrowaliśmy, z tym, co przewiduje teoria. Okazuje się, że we wszystkich procesach świadczących o obecności neutrin cząstki te zawsze miały tę samą skrętność: 1/2, czyli były lewoskrętne. To ciekawe, bo pozostałe cząstki materii mogą być zarówno lewo-, jak i prawoskrętne. Lecz nigdzie nie widać neutrin prawoskrętnych, o spinie -1/2! Jeśli nie istnieją, to dlaczego? A jeśli istnieją, gdzie się chowają?” - pyta dr hab. Marcin Chrząszcz (IFJ PAN).

Artykuł międzynarodowego zespołu fizyków, właśnie opublikowany w czasopiśmie „The European Physical Journal C”, przybliża nas do odpowiedzi na powyższe pytania. Międzynarodowy zespół (naukowcy z CERN, Polski, Belgii, Australii, Niemiec i Holandii) przeprowadzili jak do tej pory najdokładniejszą analizę danych zebranych w kilkunastu najbardziej wyrafinowanych eksperymentach z zakresu fizyki subatomowej, zarówno tych o charakterze ogólnym, jak też bezpośrednio związanych z obserwacjami neutrin (m.in. PIENU, PS-191, CHARM, E949, NuTeV, DELPHI, ATLAS, CMS).

Badacze nie ograniczyli się do samego zwiększenia liczby eksperymentów i ilości przetworzonych danych. W swojej analizie uwzględnili możliwość występowania hipotetycznych procesów proponowanych przez teoretyków, a wymagających obecności neutrin prawoskrętnych. Jednym z nich był mechanizm huśtawki, związany z neutrinami Majorany.

W 1937 roku Ettore Majorana zapostulował istnienie cząstki materii będącej własną antycząstką. Taka cząstka nie mogłaby mieć ładunku elektrycznego. Ponieważ z wyjątkiem neutrin wszystkie cząstki materii przenoszą ładunek elektryczny, nową cząstką może być właśnie neutrino.

„Z teorii wynika, że jeśli neutrina Majorany istnieją, to może również istnieć mechanizm huśtawki. Powodowałby on, że gdy neutrina o jednej skrętności są mało masywne, to neutrina o skrętności przeciwnej muszą mieć bardzo duże masy. Skoro więc nasze neutrina, lewoskrętne, mają znikome masy, to w wersji prawoskrętnej musiałyby być masywne. To tłumaczyłoby, dlaczego ich dotychczas nie zobaczyliśmy” - mówi dr hab. Chrząszcz i dodaje, że takie neutrina są jednym z kandydatów na ciemną materię.

Wyniki analizy (po stronie polskiej finansowanej z grantów Fundacji na rzecz Nauki Polskiej i Narodowej Agencji Wymiany Akademickiej), nie napawają optymizmem. Okazało się, że mimo wielu eksperymentów i ogromnej ilości zgromadzonych danych, przestrzeń możliwych parametrów została dotąd przeczesana tylko w niewielkim stopniu.

„Być może prawoskrętne neutrina odkryjemy w eksperymentach, które rozpoczną się lada chwila. Jeśli jednak będziemy mieć pecha i prawoskrętne neutrina kryją się w najdalszych zakamarkach przestrzeni parametrów, na ich odkrycie możemy poczekać nawet i sto lat” - mówi dr hab. Chrząszcz.

Na szczęście pojawił się też cień nadziei. W danych wychwycono ślad potencjalnego sygnału, który można byłoby wiązać z prawoskrętnymi neutrinami. Na obecnym etapie jest on bardzo słaby i ostatecznie może się okazać tylko statystyczną fluktuacją. Lecz co by się stało, gdyby nią nie był?

„W takim przypadku wszystko wskazuje na to, że prawoskrętne neutrina dałoby się zaobserwować już w następcy LHC, akceleratorze Future Circular Collider. FCC ma jednak pewną wadę: rozpocząłby pracę mniej więcej 20 lat od zatwierdzenia, do czego w optymalnym wariancie może dojść latem tego roku. Jeśli nie dojdzie, nim zobaczymy prawoskrętne neutrina będziemy musieli się uzbroić we wręcz gigantyczną cierpliwość” - podsumowuje dr hab. Chrząszcz.

PAP - Nauka w Polsce

lt/ ekr/

Copyright © Fundacja PAP 2020